C=-10x^2-2500x+1000000

Simple and best practice solution for C=-10x^2-2500x+1000000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for C=-10x^2-2500x+1000000 equation:



=-10C^2-2500C+1000000
We move all terms to the left:
-(-10C^2-2500C+1000000)=0
We get rid of parentheses
10C^2+2500C-1000000=0
a = 10; b = 2500; c = -1000000;
Δ = b2-4ac
Δ = 25002-4·10·(-1000000)
Δ = 46250000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{46250000}=\sqrt{250000*185}=\sqrt{250000}*\sqrt{185}=500\sqrt{185}$
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2500)-500\sqrt{185}}{2*10}=\frac{-2500-500\sqrt{185}}{20} $
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2500)+500\sqrt{185}}{2*10}=\frac{-2500+500\sqrt{185}}{20} $

See similar equations:

| 4x^2+60x+224=0 | | 8x^2+46x+6=0 | | -20x-5=15(18x+19) | | 6+19x=14(x-6) | | 4/4x^2+22/4x+6=0 | | 4(9x+17)=-14x+18 | | 5(x-4)+3(x-15)=-1 | | 2*(3.14)(7.5)h+2(3.14)(7.5)^2=1202 | | 10x-4=16-7x | | 10(8x+11)+14(15+18x)=-12 | | 20/y=6/3.3 | | 5(7x-13)+15(7x-13)=20 | | 10(5000-x)+15x=60000 | | -43-13=14(35+39x) | | 41-16=5(x-11) | | 28(24x-50)=-16-40 | | 29+36=13(22+x) | | ((28+x)*100)/43=75 | | 49-41=2(32x-28 | | x/43=80 | | 7(x+18)=-11-31 | | 3(11x+33)=-11+44 | | 38(5x-10)=-3+3 | | 2x-30=12-3x | | n+4.5=8.9 | | (10x-7)+(9x+16)=180 | | 4x+1+25=90 | | (3x+6)+(4x-29)=180 | | (2x+2)+(x+16)=180 | | 147=3(1+6k) | | 3x+6+4x-29=180 | | 7-3e=-20 |

Equations solver categories